2,583 research outputs found

    A study of pattern recovery in recurrent correlation associative memories

    Get PDF
    In this paper, we analyze the recurrent correlation associative memory (RCAM) model of Chiueh and Goodman. This is an associative memory in which stored binary memory patterns are recalled via an iterative update rule. The update of the individual pattern-bits is controlled by an excitation function, which takes as its arguement the inner product between the stored memory patterns and the input patterns. Our contribution is to analyze the dynamics of pattern recall when the input patterns are corrupted by noise of a relatively unrestricted class. We make three contributions. First, we show how to identify the excitation function which maximizes the separation (the Fisher discriminant) between the uncorrupted realization of the noisy input pattern and the remaining patterns residing in the memory. Moreover, we show that the excitation function which gives maximum separation is exponential when the input bit-errors follow a binomial distribution. Our second contribution is to develop an expression for the expectation value of bit-error probability on the input pattern after one iteration. We show how to identify the excitation function which minimizes the bit-error probability. However, there is no closed-form solution and the excitation function must be recovered numerically. The relationship between the excitation functions which result from the two different approaches is examined for a binomial distribution of bit-errors. The final contribution is to develop a semiempirical approach to the modeling of the dynamics of the RCAM. This provides us with a numerical means of predicting the recall error rate of the memory. It also allows us to develop an expression for the storage capacity for a given recall error rate

    Bayesian graph edit distance

    Get PDF
    This paper describes a novel framework for comparing and matching corrupted relational graphs. The paper develops the idea of edit-distance originally introduced for graph-matching by Sanfeliu and Fu [1]. We show how the Levenshtein distance can be used to model the probability distribution for structural errors in the graph-matching problem. This probability distribution is used to locate matches using MAP label updates. We compare the resulting graph-matching algorithm with that recently reported by Wilson and Hancock. The use of edit-distance offers an elegant alternative to the exhaustive compilation of label dictionaries. Moreover, the method is polynomial rather than exponential in its worst-case complexity. We support our approach with an experimental study on synthetic data and illustrate its effectiveness on an uncalibrated stereo correspondence problem. This demonstrates experimentally that the gain in efficiency is not at the expense of quality of match

    Coronal Fe XIV Emission During the Whole Heliosphere Interval Campaign

    Full text link
    Solar Cycle 24 is having a historically long and weak start. Observations of the Fe XIV corona from the Sacramento Peak site of the National Solar Observatory show an abnormal pattern of emission compared to observations of Cycles 21, 22, and 23 from the same instrument. The previous three cycles have shown a strong, rapid "Rush to the Poles" (previously observed in polar crown prominences and earlier coronal observations) in the parameter N(t,l,dt) (average number of Fe XIV emission features per day over dt days at time t and latitude l). Cycle 24 displays a weak, intermittent, and slow "Rush" that is apparent only in the northern hemisphere. If the northern Rush persists at its current rate, evidence from the Rushes in previous cycles indicates that solar maximum will occur in early 2013 or late 2012, at least in the northern hemisphere. At lower latitudes, solar maximum previously occurred when the time maximum of N(t,l,365) reached approximately 20{\deg} latitude. Currently, this parameter is at or below 30{\deg}and decreasing in latitude. Unfortunately, it is difficult at this time to calculate the rate of decrease in N(t,l,365). However, the southern hemisphere could reach 20{\deg} in 2011. Nonetheless, considering the levels of activity so far, there is a possibility that the maximum could be indiscernibleComment: 8 pages, 4 figures; Solar Physics Online First, 2011 http://www.springerlink.com/content/b5kl4040k0626647

    Plasmachemical Double Click Thiol–ene Reactions for Wet Electrical Barrier

    Get PDF
    Click thiol–ene chemistry is demonstrated for the reaction of thiol containing molecules with surface alkene bonds during electrical discharge activation. This plasmachemical reaction mechanism is shown to be 2-fold for allyl mercaptan (an alkene and thiol group containing precursor), comprising self-cross-linked nanolayer deposition in tandem with interfacial cross-linking to the surface alkene bonds of a polyisoprene base layer. A synergistic multilayer structure is attained which displays high wet electrical barrier performance during immersion in water

    Jet confinement by magneto-torsional oscillations

    Full text link
    Many quasars and active galactic nuclei (AGN) appear in radio, optical, and X-ray maps, as a bright nuclear sources from which emerge single or double long, thin jets. When observed with high angular resolution these jets show structure with bright knots separated by relatively dark regions. Nonthermal nature of a jet radiation is well explained as the synchrotron radiation of the relativistic electrons in an ordered magnetic field. We consider magnetic collimation, connected with torsional oscillations of a cylinder with elongated magnetic field, and periodically distributed initial rotation around the cylinder axis. The stabilizing azimuthal magnetic field is created here by torsional oscillations, where charge separation is not necessary. Approximate simplified model is developed. Ordinary differential equation is derived, and solved numerically, what gives a possibility to estimate quantitatively the range of parameters where jets may be stabilized by torsional oscillations.Comment: accepted for publication in Astrophysics and Space Scienc

    Optimal normal bases in GF(pn)

    Get PDF
    AbstractIn this paper the use of normal bases for multiplication in the finite fields GF(pn) is examined. We introduce the concept of an optimal normal basis in order to reduce the hardware complexity of multiplying field elements. Constructions for these bases in GF(2n) and extensions of the results to GF(pn) are presented. This work has applications in crytography and coding theory since a reduction in the complexity of multiplying and exponentiating elements of GF(2n) is achieved for many values of n, some prime

    Bacillus anthracis

    Get PDF
    Thesis (BS)--University of Illinois, 1890MsBound with 4 other theses IU-

    Interaction between nitric oxide signaling and gap junctions: Effects on vascular function

    Get PDF
    Nitric oxide signaling, through eNOS (or possibly nNOS), and gap junction communication are essential for normal vascular function. While each component controls specific aspects of vascular function, there is substantial evidence for cross-talk between nitric oxide signaling and the gap junction proteins (connexins), and more recently, protein protein association between eNOS and connexins. This review will examine the evidence for interaction between these pathways in normal and diseased arteries, highlight the questions that remain about the mechanisms of their interaction, and explore the possible interaction between nitric oxide signaling and the newly discovered pannexin channels. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. (C) 2011 Elsevier B.V. All rights reserved

    UPGRO Hidden Crisis Research consortium: unravelling past failures for future success in rural water supply: initial project approach for assessing rural water supply functionality and levels of performance

    Get PDF
    The new Sustainable Development Goals (SDGs) set a much stronger focus on sustainability and performance of water services, and have highly ambitious goals to achieve universal access to safe and reliable water for all by 2030 (UN 2013 ). Poor functionality of water points threatens to undermine progress, and a lack of knowledge for the reasons behind this make it difficult to recommend improvements and take corrective action. As a first step it is necessary to be able to reliably monitor current rates of functionality and to have a clear benchmark as to what constitutes a functional water point. Currently, there is no single accepted definition for functionality, although organisations are working towards this as a means of tracking progress towards the SDGs. This report sets out the initial work by the Hidden Crisis project to develop a framework approach to assess functionality in terms of different levels of performance, and a set of standard indicators which can be used to assess functionality. The report presents the results of a literature review examining the following questions: (1) what are the current approaches to defining functionality of hand-pump boreholes; and (2) what are the robust standards by which the functionality of a HPB, or population of HPB’s, can be assessed. From analyses of the literature we have developed preliminary guidelines and applied these to develop a preliminary framework

    Effective Field Theories

    Get PDF
    Effective field theories encode the predictions of a quantum field theory at low energy. The effective theory has a fairly low ultraviolet cutoff. As a result, loop corrections are small, at least if the effective action contains a term which is quadratic in the fields, and physical predictions can be read straight from the effective Lagrangean. Methods will be discussed how to compute an effective low energy action from a given fundamental action, either analytically or numerically, or by a combination of both methods. Basically,the idea is to integrate out the high frequency components of fields. This requires the choice of a "blockspin",i.e. the specification of a low frequency field as a function of the fundamental fields. These blockspins will be the fields of the effective field theory. The blockspin need not be a field of the same type as one of the fundamental fields, and it may be composite. Special features of blockspins in nonabelian gauge theories will be discussed in some detail. In analytical work and in multigrid updating schemes one needs interpolation kernels \A from coarse to fine grid in addition to the averaging kernels CC which determines the blockspin. A neural net strategy for finding optimal kernels is presented. Numerical methods are applicable to obtain actions of effective theories on lattices of finite volume. The constraint effective potential) is of particular interest. In a Higgs model it yields the free energy, considered as a function of a gauge covariant magnetization. Its shape determines the phase structure of the theory. Its loop expansion with and without gauge fields can be used to determine finite size corrections to numerical data.Comment: 45 pages, 9 figs., preprint DESY 92-070 (figs. 3-9 added in ps format
    • …
    corecore